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Abstract: As [1] and [2] have discussed, many of the Performance Shaping Factors (PSFs) used in
Human Reliability Analysis (HRA) methods are not directly measurable or observable. Methods like
SPAR-H require the analyst to assign values for all of the PSFs, regardless of the PSF observability;
this introduces subjectivity into the human error probability (HEP) calculation. One method to
reduce the subjectivity of HRA estimates is to formally incorporate information about the probability
of the PSF's into the methodology for calculating the HEP. This can be accomplished by encoding
prior information in a Bayesian Network (BN) and updating the network using available observations.

We translated an existing HRA methodology, SPAR-H, into a Bayesian Network to demonstrate the
usefulness of the BN framework. We focus on the ability to incorporate prior information about PSF
probabilities into the HRA process. This paper discusses how we produced the model by combining
information from two sources, and how the BN model can be used to estimate HEPs despite missing
observations. Use of the prior information allows HRA analysts to use partial information to estimate
HEPs, and to rely on the prior information (from data or cognitive literature) when they are unable to
gather information about the state of a particular PSF. The SPAR-H BN model is a starting point for
future research activities to create a more robust HRA BN model using data from multiple sources.

Keywords: Bayesian Networks, Human Reliability Analysis (HRA), human error probability, uncer-
tainty

1. INTRODUCTION

In the nuclear power industry, Probabilistic Risk Assessment (PRA) models capture the sequences of
events that can lead to core damage. These sequences typically include human failure events (HFEs),
wherein human errors can result in the failure of a system or plant function. Human Reliability
Analysis (HRA) is used to estimate the human error probability (HEP) for the HFEs in PRAs.

In many HRA methods, the HEP is the conditional probability of an HFE, given the performance
context, P(HF E|context). The context is represented by a set of Performance Shaping Factors (PSFs)
or Performance Influencing Factors (PIFs), which are discretized into levels or states. HRA methods
such as SPAR-H [3] are designed to assess P(HF E|context), for a known context. In the SPAR-
H methodology, the analyst determines the underlying context by selecting one level for each PSF.
However, it is not always possible for an HRA analyst to gather perfect information on the level of all
of the PSFs.

As [1] and [2] have discussed, many of the PSFs are not directly measurable or observable. Requiring
the analyst to assign PSF levels for unobservable PSF's results in a great deal of subjectivity HRA. One
method to reduce the subjectivity of HRA estimates is to formally incorporate information about the
probability of the PSF levels into the methodology for calculating the HEP. This can be accomplished
by encoding prior information in a Bayesian Network (BN) and updating the network using available
observations.

Bayesian Networks have a number of benefits that enhance PRA [4], and these benefits extend naturally
to HRA. In this paper, we focus on their ability to incorporate prior information about the probability
of the PSF levels into HEP calculations. Recently, Bayesian Networks were introduced to the HRA
field via two approaches: data-informed models [5, 6] and expert-informed models [7]. Both models



are the result of research activities and therefore require further refinement and validation before they
can be used for regulatory purposes. However, current HRA methods can be used to help construct
BNs; this allows the HRA industry to exploit the benefits of BNs with minimal additional validation.

We combined an existing HRA methodology, SPAR-H [3], with expert-estimated probabilities for the
PSF multipliers from US NRC documents [8] to build a SPAR-H BN. In this paper, we use the SPAR-
H BN model to demonstrate how analysts can calculate HEPs for situations with perfect information
and for situations with missing information. Use of perfect information produces results identical to
the SPAR-H methodology. For situations when the analyst is unable to gather information about
the level of a PSF, the prior information encoded in the BN is used to replace the analyst’s lack of
knowledge.

2. SPAR-H METHOD OVERVIEW

The Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) [3] method was devel-
oped to estimate HEPs for use in the SPAR PRA models used in commercial nuclear power plants.
SPAR-H is used as part of PRA in over 70 US nuclear power plants and by the event assessment pro-
grams at the US NRC. SPAR-H also is the main model behind the Human Event Reliability Analysis
(HERA) HRA database sponsored by Nuclear Regulatory Commission.

SPAR-H is used to quantify HEPs through the following steps:

1. Determine the plant operation state and type of activity. The SPAR-H method considers
two plant states (at-power and low power/shutdown) and two types of activities (diagnosis
and action). The two types of activities use the same equations and PSFs, but different PSF
multipliers. In this paper, we present the model for action tasks during at-power operations.

2. Evaluate PSF levels to determine the multipliers. Assign a level for each PSF on the
HEP worksheet. The SPAR-H method uses eight PSFs to represent the context. Each PSF level
is associated with an HEP multiplier value. Table 2 contains the SPAR-H PSFs and the PSF
multiplier values for action tasks'.

3. Calculate HEP using equation provided in the worksheets. Two equations are provided;
the equation depends on the number of negative PSFs (any PSF where the assigned level has
a multiplier greater than 1). Equation 1 is used to calculate the HEP for situations with fewer
than 3 negative PSFs. Equation 2 is used if there are 3 or more negative PSFs.

8
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B NHEP -I[} S;
 NHEP-(II§Si—1)+1

where S; is the multiplier associated with the assigned level of PSF . For diagnosis tasks
NHEP =0.01 and for action tasks NHEP = 0.001.

HEP (2)

3. BN OVERVIEW

A Bayesian Networks a type of quantitative causal model, which expresses the joint probability dis-
tribution, P, of a set of variables in terms of the conditional probability distributions. The graphical

Note that the SPAR-H method also has an “Insufficient Information” level for each PSF, with a corresponding
multiplier of 1. This is not included in Table 2. See Section 6 for more information.



Figure 1: Example Bayesian Network diagram for four nodes, displaying the conditional dependence
and independence relationships among nodes A, B,C and D.

part of a BN consists of nodes N (the variables or PIFs) and directed arcs, which specify conditional
dependencies between nodes). Most BNs use discrete conditional probability tables to express the
strength of the relationships between the variables.

A BN is a knowledge base that can be used to reason about events, based on the set of information
that is currently available. From a Bayesian statistical point of view, this BN is the prior probability
distribution for the system. Bayesian updating is used to make inferences (update the state of knowl-
edge in the network) as additional information (e.g., analyst observations) become available. Since
the BN includes prior information about all of the nodes in the network, analysts are not required to
make observations about variables that are not readily observable; the prior information about each
node is used in places where the analyst lacks new information.

3.1. BN Structure

The BN structure encodes two types of information: the variables of interest (nodes) and the causal
dependencies among the variables (arcs). Each node in a BN has a finite number of mutually exclusive
states. The BN structure displays the conditional dependence and independence relationships among
entire universe of variables. Figure 1 can be used to illustrate this concept. Directed arcs are used to
indicate causal relationships between nodes, with the arrow head indicating the direction of causality.
Node A directly influences node B. Node B directly influences both C' and D. There is no direct
arc between A and C, rather, A indirectly influences C through B. If B is known, A and C are
independent (therefore, they are conditionally independent, given knowledge of B). All root nodes
are conditionally independent, and all other nodes are conditionally dependent only on their direct
parent nodes.

The BN structure can be built using expert opinion, system dependency information, available data,
literature or any combination of sources. Pearl [9] provides guidance to help identify causal relation-
ships to be encoded in the BN, and Lu & Druzdzel [10] describe software that aids in the process of
building graphical models based on causal mechanisms.

3.2. BN Quantification

Once the BN structure is complete, each node is assigned a probability distribution, usually by pop-
ulating discrete conditional probability tables (CPTs). The CPTs contain all known information
concerning the probabilities of the nodes and the probabilistic relationships between nodes. The con-
ditional probability table will contain one probability value for each possible configuration of states of
the node and its parents.

The size of the CPT depends on the number of parents. Many BNs use binary nodes to reduce the
complexity of the CPTs. For a binary node with n binary parents, the CPT will contain 2(**1) cells.
The nodes in Figure 1 are all binary. Since A has no parents, it is fully specified by P(A = a) and



P(A = @), which must sum to 1.0 according to the laws of probability. The conditional probability
table for node b is displayed in Table 1. The conditional probability tables for ¢,d will be similar to
Table 1. Note that in the CPTs, each column must sum to 1.0 (i.e., the probability must sum to 1.0
for each state of the parent).

Parent | Pr(a) | Pr(a)
Pr(b) | Pr(bla) | Pr(bla)
Pr(b) | Pr(bla) | Pr(bla)

Child

Table 1: Conditional probability table for node b with one parent, a.

The probabilities can be assigned using expert opinion, available data, deterministic relationships, or
any combination of information. Conditional probabilities can be populated by using expert opinion,
data, or a combination of both. The reader is referred to the references for additional information
about conditional probability in Bayesian networks [9, 11, 12].

Once a CPT is assigned to each node, the BN calculates the unconditional (marginal) probability
distribution for every node, N, from the conditional probability table for N and the probability of the
parents (via the law of total probability, Equation 3).

P(N) = P(N|parents) x P(parents) (3)

3.3. Reasoning with a BN

Once the initial BN is complete, an HRA analyst would use this model to make inferences about
problems (reasoning) via Bayesian updating. The initial BN represents the prior joint probability
distribution of the system. To use the BN, the analyst makes observations (sets evidence) about
certain nodes. By setting evidence, an analyst is providing the model with new information (e.g.,
recently collected data, observation of a particular state of a PSF) about the state of the system. This
information is automatically propagated through the network to produce posterior joint probability
distribution of the model. These updated probabilities are the result of both prior information in the
BN and the new evidence. This process can be repeated every time new evidence becomes available.

4. SPAR-H BN MODEL

To demonstrate the usefulness of the BN methodology for HRA, we built a BN based on the SPAR-H
methodology. The Bayesian Network was constructed using Hugin software version 7.5. We used
two sources of information to construct the BN based on the SPAR-H methodology. The SPAR-H
methodology [3] was used to build the BN structure and the conditional probability table for the
Error node. NUREG/CR-6949 [8] provides expert estimates of the probability of the PSF levels; this
information was used to assign the marginal probability tables for the PSFs. The target of the HRA
analysis is the marginal probability of the Error node. The Bayesian Network uses Equation 3 to get
the marginal probability of Error from the conditional probabilities in the model.

4.1. Graphical Structure

There are 9 nodes in the graphical model: one node for each of the 8 PSFs, and one node for a human
failure event (“Error”). Each PSF nodes has the same levels that the PSF has in the SPAR-H method
(excluding the level “Insufficient Information”); these are listed in Table 2. The Error node is discrete
and has two states: error occurs (P(Error)) and no error occurs (1 — P(Error)).



Figure 2: Naive BN representing the conditional independence statements in the SPAR-H method.

The graphical structure of a BN encodes the conditional dependence statements about the variables
in the model. According to the SPAR-H manual, each of the 8 PSFs directly impacts the probability
of error, so a causal arc goes from each PSF node to the Error node. The SPAR-H method treats
each of the 8 PSFs as independent of the other PSFs, so causal arcs were omitted between all of the
PSFs?. The resultant Bayesian Network is pictured in Figure 2.

4.2. PSF Node Probabilities

In the BN in Figure 2, the 8 PSFs are root nodes. The marginal probability tables for the PSF
nodes encode the probability of observing each PSF level during nuclear power plant operations.
NUREG/CR-6949 provides estimated probabilities for the PSF multipliers in SPAR-H; these proba-
bilities were developed using by limited knowledge of the shape of the PSF distribution and expert
judgment [8]. In the SPAR-H BN, we use the NUREG/CR-6949 probabilities for all of the PSFs
except for Experience/Training.

The NUREG/CR~6949 distribution for the Experience/Training PSF assigned equal probability (P =
0.33) to the three possible levels. Upon review of the SPAR-H method, it was determined that Low
Experience/Training is assigned for operators who have less than 6 months of experience or training.
It is unlikely that 33% of operating crews have Low Experience/Training, so we adjusted probability
distribution for this PSF. We assumed that Experience/Training has a uniform distribution over
a 20-year career-span. We assumed that Low corresponds to 0-6 months of experience, Nominal
corresponds to 6 months to 10 years of experience and High Experience/Training corrsponds 10 to 20
years of experience.

The probability values for the PSF levels are presented in Table 2. In the original SPAR-H method,
each PSF has an additional level: “Insufficient Information” (with a multiplier of 1.0). This has been
omitted in the BN version of SPAR-H, because in the Bayesian framework, prior information is used
in situations where there is missing information. In a BN it is not necessary to explicitly include
an insufficient information state, because the prior information in Table 2 is used for inference when
additional information is unavailable.

4.3. Conditional Probability of Human Error

The SPAR-H method provides a formula to assess the HEP based on the PSF levels selected by the
analyst. This formula deterministically assigns P(Error|context), where context represents the as-
signed PSF levels. To build the CPT for the error node, it is necessary to determine P(Error|context)
for every for every possible context (combination of PSF levels). For two PSF levels (Available Time
= Inadequate and Fitness for duty = Unfit), the final HEP is assigned the value of 1.0 regardless

2The SPAR-H manual acknowledges that there is some dependence among the PSFs, however, the SPAR-H method
treats the PSFs as independent entities. Future versions of the SPAR-H BN may include these dependencies.



Table 2: Prior probabilities for the PSF multipliers based on expert elicited values in NUREG/CR-
6949 [8].

PSF PSF Level Multiplier Probability
Expansive time 0.01 0.023
Extra time 0.1 0.136
Available Time Nominal time 1 0.683
Barely adequate time 10 0.159
Inadequate time HEP=1.0 1E-06
Nominal 1 0.841
Stressors High 2 0.136
Extreme 5 0.023
Nominal 1 0.500
Complexity Moderately complex 2 0.341
Highly complex 5 0.159
High 0.5 0.500
Experience/Training Nominal 1 0.475
Low 3 0.025
Nominal 1 0.450
Procedures Available, but poor 5 0.300
Incomplete 20 0.200
Not available 50 0.050
Good 0.5 0.159
. Nominal 1 0.683
Ergonomics/HMI Poor 10 0.136
Missing/Misleading 50 0.023
Nominal 1 0.841
Fitness for duty Degraded Fitness 5 0.159
Unfit HEP=1.0 1E-06
Good 0.5 0.159
Work Processes Nominal 1 0.819
Poor 5 0.023

of the state of the other PSFs. For all combinations of PSFs that included one of these levels,
P(Error|context) = 1.0.

Hugin includes a Table Generator Function that allows model builders to develop mathematical ex-
pressions for the CPT. In the remainder of the CPT, the conditional HEP was assigned by direct
application of the appropriate SPAR-H formula. As discussed in Section 2, the SPAR-H method
uses a correction factor if there are three or more PSFs in a negative state. In the Hugin model, we
added a dummy node that counted the number of PSFs in the negative state. For cases where there
were 3 or more negative PSFs, the modified SPAR-H formula was applied to determine the HEP. For
the remaining cases, the original SPAR-H formula was used to inserted to calculate the conditional
HEP. We then added a test to determine if the calculated HEP would exceed 1.0. In these cases, the
conditional HEP was rounded down to 1.0.

4.4. HEP Calculation

The Bayesian Network uses Equation 3 to get the HEP (the marginal probability of error) from the
conditional probabilities in the model. To determine the final HEP in the SPAR-H BN, the marginal
probabilities for the PSFs are multiplied by the conditional probability table for human error. For the
SPAR-H BN, this is:

P(Error) = P(Error|PSFy, PSF,,...PSFg) x P(PSF,) «* P(PSF,) % ...« P(PSFg) (4)

The SPAR-H BN is the prior information about human error probability, based on the SPAR-H model



Table 3: Summary of the input and the results for the SPAR-H BN example cases. The numbers refer
to the selected PSF multiplier. The ? symbol indicates no new information has been added to the BN

for the PSF.

Case 1 Case 2 Case 3 Case 4 Case 5 | Case 6

Available Time 1 1 1 1 1 ?

Stressors 1 1 1 1 1 ?

Complexity 1 1 1 1 1 ?

Experience/Training 1 1 1 1 1 ?

Procedures 1 1 1 1 1 ?

ErgoHMI 1 10 ? See text | See text ?

Fitness for Duty 1 1 1 1 1 ?

Work Processes 1 1 1 1 1 ?
HEP | 1.00E-03 | 1.00E-02 | 3.27E-03 | 5.50E-03 | 2.49E-03 | 0.0567

and the NUREG/CR~6949 data. This represents the baseline HEP, where there is no information
from the HRA analyst. If there is information available from the HRA analyst, the analyst enters
the available information (observations of PSF levels) by setting evidence in the BN software. Setting
evidence on a variable updates the probability distribution that is used in Equation 4. If the analyst
does not set evidence on a variable, the BN uses the prior probability distribution. As evidence
is entered (or retracted), the BN software combines the prior model with the new information and
automatically calculates the updated HEP.

5. RESULTS

The BN in Section 4 encapsulates the prior information about human error probability, based on the
SPAR-H model and the NUREG/CR-6949 data. This represents the baseline model (where there
is no information from the PRA analyst). In most HRA applications, the HRA analyst will have
at least some information to add to the prior model. We ran several cases using different types of
information: perfect information, partial information, or no new information. The test cases and
results are described below and are summarized in Table 3.

5.1. Cases 1 and 2: Perfect Information

To set evidence for perfect knowledge of the level of a PSF, the analyst sets evidence that the prob-
ability of the known PSF level is 1.0 and all other PSF levels are 0. This type of evidence replaces
the probability distribution in Table 2, so the analyst is not using any of the prior information. If the
HRA practitioner has perfect knowledge of the level of all eight PSFs, the BN model produces results
that are identical to applying the current SPAR-H formula.

Cases 1 and 2 display the input and the results for analysts with perfect information about the level of
all of the PSF's. In Case 1, the analyst knows that all of the PSFs are in the “nominal” level. Setting
all of the PSFs to be nominal in the BN produces an HEP of 1.0E-3, which equals the baseline HEP
for action tasks in the SPAR-H formula. In Case 2, the analyst knows that the Ergonomics PSF is
“Poor” and the remaining PSFs are nominal. The resulting HEP is 1.0E-2, which is identical to the
HEP that the SPAR-H formula provides.

5.2. Cases 3, 4, and 5: Partial information

Ergonomics/HMI is one of the PSFs that is not directly observable according to Boring et al. [2]. In
the original SPAR-H methodology, the analyst would have to select a level for Ergonomics, regardless
of its observability. In this case, the analyst would select “Insufficient Information” which, in the



SPAR-H formula, is equivalent to setting the level to “Nominal.” This produces an HEP of 1.0e-3,
just like Case 1. This mathematically equates a lack of information about the Ergonomics to perfect
information that Ergonomics are nominal. However, the absence of information about the ergonomics
PSF does not mean that the ergonomics are nominal in reality.

A better way to address the lack of information about Ergonomics is to use the prior information in
the BN, instead of making an observation about Ergonomics. Cases 3, 4, and 5 display the input and
results for analysts with partial information. In all three cases, the analyst has perfect information
about the level of all of the PSFs except for Ergonomics. In Case 3, the analyst has no new information
about the level of Ergonomics PSF. In Cases 4 and 5 the analyst has some information about the
Ergonomics PSF, but the information is not perfect. In both Case 4 and Case 5, the analyst believes
that there is a 0% chance of Ergonomics being Missing/Misleading and a 0% chance of Ergonomics
being Good.

In Case 4, the analyst also believes that a 50% probability that the Ergonomics level is Nominal and
a 50% probability that the Ergonomics level is Poor. In Case 5, the analyst is unsure about the
probability of being Nominal or Poor, so the analyst does not enter any additional information about
Ergonomics. In this Case 5, the analyst has entered partial evidence about Ergonomics. The BN
performs Bayesian updating: it combines the prior distribution with the new information. The BN
uses Bayesian updating to get posterior probability on Nominal 0.834 and Poor to 0.166.

The resulting HEP for Case 3 is 3.27E-3. This is different than the probability in Case 1, because
it uses the prior probability distribution for Ergonomics rather than perfect information about Er-
gonomics. The resulting HEPs for Case 4 and Case 5 represent scenarios where the has ruled out
the Missing/Misleading and Good levels for Ergonomics. However, in Case 4 the analyst made an
explicit statement of equal probability between Nominal and Poor. In Case 5, the analyst has made a
statement of equal likelihood between Nominal and Poor. In Case 4 the analyst evidence has reduced
the probability of the Nominal level and increased the probability of the Poor level. In Case 5, the
analyst increased the probability of both levels. This results in Case 4 having higher posterior HEP
(5.50E-03) than in Case 5 (2.49E-03).

5.3. Case 6: No new information

Case 6 represents the prior model for the system, without any additional input from an HRA prac-
titioner. This is equivalent to assuming that all of the PSFs are at the “Insufficient Information.”
In the original SPAR-H method, the HEP multiplier for each of these conditions is 1, so the HEP
would be (just like Case 1). However, the absence of information about a PSF does not mean that
the PSF is nominal in reality. In a Bayesian framework, when a piece of information is unknown,
analysts use prior information about the system/process to fill in the gaps. In the SPAR-H BN, the
prior distributions from Table 2 are propagated through the model to produce a final HEP.

The SPAR-H BN, with the prior probabilities discussed above, provides a baseline HEP of 0.058 for
action tasks. This is a substantial, important difference from the assumed baseline HEP of 1.0E-03,
and this difference merits further exploration. It is possible that the baseline HEP in SPAR-H was
intended to capture both the P(Error|PSF's) and P(PSF's), and it is possible that the expert elicited
priors are conservative. Future research activities should be dedicated to validating the information
from NUREG/CR~6949, validating the SPAR-H method, or both.

6. DISCUSSION AND NEXT STEPS

The model in this paper is a starting point for expanding the use of BNs within HRA. Using a BN
framework for HRA provides a number of benefits to HRA practitioners. The original SPAR-H method
requires analysts to make a definite statement about all 8 PSFs, but according to Boring [2], many



PSFs are not directly observable. Using a BN it allows HRA analysts to make inferences with missing
observations and imperfect information. In the original SPAR-H method, analysts have the option of
assigning the “Insufficient Information” level for a PSF, however, assigning “Insufficient Information”
is mathematically equivalent to assigning the PSF to the “nominal” level. It is not justifiable to
equate the lack of information with perfect information that the the PSF level is nominal. Using prior
information eliminates this problem.

The BN in this paper was produced by synthesizing two types of information: the SPAR-H model and
expert estimates from the NRC. There are additional data-collection activities occurring throughout
the nuclear industry (e.g., CORE-DATA [13], OPERA [14], HERA [15]), and there is a huge body of
psychological research that could be of predictive value for HRA. The BN framework can be used to
synthesize data and information from multiple sources.

BNs formally display and document the assumptions and information that go into the model. This
provides an opportunity for industry and researchers to verify the assumptions that may have been
made during the modeling process. In this paper, it was assumed that the career of an NPP operator
lasts 20 years, and that experience is uniformly distributed. This assumption about the distribution
of experience could be verified and/or adjusted using plant-specific information. Additionally, the BN
framework can easily incorporate changes to the method without requiring the entire HRA method to
be rebuilt and validated. If one of the underlying assumptions changes, the BN can be locally modi-
fied. For example, the probabilities of the Experience/Training PSF can be adjusted without making
changes to the remainder of the model. In contrast, expert-based models with implicit assumptions
must be rebuilt when assumptions change.

The authors are currently working to integrate data from HERA and CORE-DATA into the SPAR-
H BN. In the next version of the SPAR-H BN model, the event data will be used to populate the
conditional probability tables for the PSFs. We will also use event data to modify the baseline HEP

(1E-03) from the original SPAR-H method and we intend to include uncertainty about the value in
the final BN.

By shifting to a BN structure, we are becoming more explicit about the information that goes into the
model. The SPAR-H BN can be used as a starting point for future research activities. The difference
between the baseline HEP in the original SPAR-H method and in the SPAR-H BN (Case 6) is an
interesting starting point for research. Future research activities should be dedicated to validation of
the prior probabilities on the PSFs from NUREG/CR~6949 and validation of the way the SPAR-H
formulas were combined with the PSF priors.

It is critically important to explore methods for modifying the SPAR-H BN structure to better rep-
resent the interdependency among the PSFs. Groth and Mosleh [6] have proposed an interdependent
structure based on analysis of HRA data. Cognitive models could be used to develop an expert-
informed interdependency structure in explicit, traceable manner. The SPAR-H manual discusses
cognitive models that were considered in the construction of the method, but these are included
only implicitly in the SPAR-H calculation framework. Future research efforts should be dedicated to
encoding these cognitive models explicitly in the BN.

ACKNOWLEDGEMENTS

The authors would like to thank the late Dr. Dana Kelly for support and feedback during model
construction. This work was supported by the Laboratory Directed Research and Development pro-
gram at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpo-
ration, for the US Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.



REFERENCES

1]
2]

K. M. Groth and A. Mosleh, “A data-informed PIF hierarchy for model-based human reliability
analysis,” Submitted to Reliability Engineering & System Safety, (In Press 2012).

R. L. Boring, C. D. Griffith, and J. C. Joe, “The measure of human error: Direct and indirect
performance shaping factors,” in IEEE 8th Human Factors and Power Plants and HPRCT 13th
Annual Meeting, pp. 170-176, 2007.

D. Gertman, H. Blackman, J. Marble, J. Byers, and C. Smith, “The SPAR-H Human Reliability
Analysis method,” NUREG/CR~6883, US Nuclear Regulatory Commission, Washington DC,
2005.

H. Langseth and L. Portinale, “Bayesian networks in reliability,” Reliability Engineering € System
Safety, vol. 92, no. 1, pp. 92-108, 2007.

K. Groth and A. Mosleh, “A performance shaping factors causal model for nuclear power plant
human reliability analysis.,” in In proceedings of The International Conference on Probabilistic
Safety Assessment and Management (PSAM 10), (Seattle, WA), June 7-11, 2010.

K. M. Groth and A. Mosleh, “Deriving causal Bayesian networks from human reliability analysis
data: A methodology and example model,” Proceedings of the Institution of Mechanical Engi-
neers, Part O: Journal of Risk and Reliability, (In Press 2012). doi:10.1177/1748006X11428107.

M. De Ambroggi and P. Trucco, “Modelling and assessment of dependent performance shaping
factors through analytic network process,” Reliability Engineering € System Safety, vol. 96, no. 7,
pp- 849-860, 2011.

B. Hallbert and A. Kolaczkowski, “The employment of empirical data and Bayesian methods
in human reliability analysis: A feasibility study,” NUREG/CR-6949, US Nuclear Regulatory
Commission, Washington DC, 2007.

J. Pearl, Causality: models, reasoning, and inference. Cambridge University Press, 2000.

T.-C. Lu and M. J. Druzdzel, “Interactive construction of graphical decision models based on
causal mechanisms,” FEuropean Journal of Operational Research, vol. 199, no. 3, pp. 873-882,
2009.

S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities on graphical
structures and their application to expert systems,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 50, no. 2, pp. 157-224, 1988.

M. J. Druzdzel and L. C. van der Gaag, “Building probabilistic networks: Where do the numbers
come from?,” IEEE Transactions on Knowledge & Data Engineering, vol. 12, no. 4, pp. 481-486,
2000.

B. Kirwan, G. Basra, and S. Taylor-Adams, “CORE-DATA: a computerised human error database
for human reliability support,” in Proceedings of the 1997 IEEE Sizth Conference on Human
Factors and Power Plants, (Orlando, FL), pp. 9.7-9.12, June 1997.

J. Park and W. Jung, “A database for human performance under simulated emergencies of nuclear
power plants,” Nuclear Engineering and Technology, vol. 37, no. 5, p. 491, 2005.

B. Hallbert, R. Boring, D. Gertman, D. Dudenhoeffer, A. Whaley, J. Marble, J. Joe, and E. Lois,
“Human events repository analysis (HERA) system overview,” NUREG/CR-6903, Vol. 1, US
Nuclear Regulatory Commission, Washington DC, 2006.



